{ "id": "2011.07544", "version": "v1", "published": "2020-11-15T14:53:55.000Z", "updated": "2020-11-15T14:53:55.000Z", "title": "A nonlocal approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties", "authors": [ "Antonio De Rosa", "Domenico Angelo La Manna" ], "categories": [ "math.AP" ], "abstract": "We study a non local approximation of the Gaussian perimeter, proving the Gamma convergence to the local one. Surprisingly, in contrast with the local setting, the halfspace turns out to be a volume constrained stationary point if and only if the boundary hyperplane passes through the origin. In particular, this implies that Ehrhard symmetrization can in general increase the considered non local Gaussian perimeter.", "revisions": [ { "version": "v1", "updated": "2020-11-15T14:53:55.000Z" } ], "analyses": { "keywords": [ "gamma convergence", "nonlocal approximation", "isoperimetric properties", "non local gaussian perimeter", "non local approximation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }