{ "id": "2010.00119", "version": "v1", "published": "2020-09-30T21:52:17.000Z", "updated": "2020-09-30T21:52:17.000Z", "title": "On the size of $A+λA$ for algebraic $λ$", "authors": [ "Dmitry Krachun", "Fedor Petrov" ], "categories": [ "math.CO" ], "abstract": "For a finite set $A\\subset \\mathbb{R}$ and real $\\lambda$, let $A+\\lambda A:=\\{a+\\lambda b :\\, a,b\\in A\\}$. Combining a structural theorem of Freiman on sets with small doubling constants together with a discrete analogue of Pr\\'ekopa--Leindler inequality we prove a lower bound $|A+\\sqrt{2} A|\\geq (1+\\sqrt{2})^2|A|-O({|A|}^{1-\\varepsilon})$ which is essentially tight. We also formulate a conjecture about the value of $\\liminf |A+\\lambda A|/|A|$ for an arbitrary algebraic $\\lambda$. Finally, we prove a tight lower bound on the Lebesgue measure of $K+\\mathcal{T} K$ for a given linear operator $\\mathcal{T}\\in \\operatorname{End}(\\mathbb{R}^d)$ and a compact set $K\\subset \\mathbb{R}^d$ with fixed measure. This continuous result supports the conjecture and yields an upper bound in it.", "revisions": [ { "version": "v1", "updated": "2020-09-30T21:52:17.000Z" } ], "analyses": { "keywords": [ "tight lower bound", "compact set", "structural theorem", "linear operator", "lebesgue measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }