{ "id": "2009.11878", "version": "v1", "published": "2020-09-24T18:00:04.000Z", "updated": "2020-09-24T18:00:04.000Z", "title": "The non-integrability of $L^{a,b,c}$ quiver gauge theories", "authors": [ "Konstantinos S. Rigatos" ], "comment": "8 pages, 2 figures", "categories": [ "hep-th" ], "abstract": "We show that the $AdS_5 \\times L^{a,b,c}$ solution in type IIB theory is non-integrable. To do so, we consider a string embedding and study its fluctuations which do not admit Liouville integrable solutions. We, also, perform a numerical analysis to study the time evolution of the string and compute the largest Lyapunov exponent. This analysis indicates that the string motion is chaotic. Finally, we consider the point-like limit of the string that corresponds to BPS mesons of the quiver theory.", "revisions": [ { "version": "v1", "updated": "2020-09-24T18:00:04.000Z" } ], "analyses": { "keywords": [ "quiver gauge theories", "non-integrability", "type iib theory", "largest lyapunov exponent", "admit liouville integrable solutions" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }