arXiv Analytics

Sign in

arXiv:2009.10702 [math.OC]AbstractReferencesReviewsResources

A robust Lyapunov criterion for non-oscillatory behaviors in biological interaction networks

David Angeli, M. Ali Al-Radhawi, Eduardo Sontag

Published 2020-09-22Version 1

We introduce the notion of non-oscillation, propose a constructive method for its robust verification, and study its application to biological interaction networks (also known as, chemical reaction networks). We begin by revisiting Muldowney's result on non-existence of periodic solutions based on the study of the variational system of the second additive compound of the Jacobian of a nonlinear system. We show that exponential stability of the latter rules out limit cycles, quasi-periodic solutions, and broad classes of oscillatory behavior. We focus then on nonlinear equations arising in biological interaction networks with general kinetics, and we show that the dynamics of the aforementioned variational system can be embedded in a linear differential inclusion. We then propose algorithms for constructing piecewise linear Lyapunov functions to certify global robust non-oscillatory behavior. Finally, we apply our techniques to study several regulated enzymatic cycles where available methods are not able to provide any information about their qualitative global behavior.

Related articles:
arXiv:2302.05090 [math.OC] (Published 2023-02-10)
Graphical characterizations of robust stability in biological interaction networks
arXiv:2307.13678 [math.OC] (Published 2023-07-25)
On structural contraction of biological interaction networks