{ "id": "2009.05251", "version": "v1", "published": "2020-09-11T06:43:49.000Z", "updated": "2020-09-11T06:43:49.000Z", "title": "A harmonic sum over nontrivial zeros of the Riemann zeta-function", "authors": [ "Richard P. Brent", "David J. Platt", "Timothy S. Trudgian" ], "categories": [ "math.NT" ], "abstract": "We consider the sum $\\sum 1/\\gamma$, where $\\gamma$ ranges over the ordinates of nontrivial zeros of the Riemann zeta-function in an interval $(0,T]$, and consider the behaviour of the sum as $T \\to\\infty$. We show that, after subtracting a smooth approximation $\\frac{1}{4\\pi} \\log^2(T/2\\pi),$ the sum tends to a limit $H \\approx -0.0171594$ which can be expressed as an integral. We calculate $H$ to high accuracy, using a method which has error $O((\\log T)/T^2)$. Our results improve on earlier results by Hassani and other authors.", "revisions": [ { "version": "v1", "updated": "2020-09-11T06:43:49.000Z" } ], "analyses": { "subjects": [ "11M26", "11Y30" ], "keywords": [ "nontrivial zeros", "riemann zeta-function", "harmonic sum", "smooth approximation", "sum tends" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }