{ "id": "2008.06140", "version": "v1", "published": "2020-08-14T00:12:17.000Z", "updated": "2020-08-14T00:12:17.000Z", "title": "The mean square of the error term in the prime number theorem", "authors": [ "Richard P. Brent", "David J. Platt", "Timothy S. Trudgian" ], "comment": "23 pages", "categories": [ "math.NT" ], "abstract": "We show that, on the Riemann hypothesis, $\\limsup_{X\\to\\infty}I(X)/X^{2} \\leq 0.8603$, where $I(X) = \\int_X^{2X} (\\psi(x)-x)^2\\,dx.$ This proves (and improves on) a claim by Pintz from 1982. We also show unconditionally that $\\frac{1}{5\\,374}\\leq I(X)/X^2 $ for sufficiently large $X$, and that the $I(X)/X^{2}$ has no limit as $X\\rightarrow\\infty$.", "revisions": [ { "version": "v1", "updated": "2020-08-14T00:12:17.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26", "11N05" ], "keywords": [ "prime number theorem", "error term", "mean square", "riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }