{ "id": "2007.06830", "version": "v1", "published": "2020-07-14T05:44:30.000Z", "updated": "2020-07-14T05:44:30.000Z", "title": "Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured Euclidean space", "authors": [ "Kin Ming Hui", "Jinwan Park" ], "comment": "30 pages", "categories": [ "math.AP" ], "abstract": "We study the existence, uniqueness, and asymptotic behaviour of the singular solution of the fast diffusion equation, which blows up at the origin for all time. For $n\\ge 3$, $00$. Furthermore, for the radially symmetric initial value $u_0$, $3 \\le n < 8$, $1- \\sqrt{\\frac{2}{n}} \\le m \\le \\min \\left \\{\\frac{2(n-2)}{3n}, \\frac{n-2}{n+2}\\right \\}$, we also have the asymptotic large time behaviour.", "revisions": [ { "version": "v1", "updated": "2020-07-14T05:44:30.000Z" } ], "analyses": { "keywords": [ "fast diffusion equation", "asymptotic behaviour", "punctured euclidean space", "singular solution", "asymptotic large time behaviour" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }