arXiv:2007.02585 [astro-ph.SR]AbstractReferencesReviewsResources
Seismic evidence for near solid-body rotation in two Kepler subgiants and implications for angular momentum transport
S. Deheuvels, J. Ballot, P. Eggenberger, F. Spada, A. Noll, J. W. den Hartogh
Published 2020-07-06Version 1
Asteroseismic measurements of the internal rotation of subgiants and red giants all show the need for invoking a more efficient transport of angular momentum than theoretically predicted. Constraints on the core rotation rate are available starting from the base of the red giant branch (RGB) and we are still lacking information on the internal rotation of less evolved subgiants. We identified two young Kepler subgiants, KIC8524425 and KIC5955122, whose mixed modes are clearly split by rotation. Using the full Kepler data set, we extracted the mode frequencies and rotational splittings for the two stars using a Bayesian approach. We then performed a detailed seismic modeling of both targets and used the rotational kernels to invert their internal rotation profiles. We found that both stars are rotating nearly as solid bodies, with core-envelope contrasts of $\Omega_{\rm g}/\Omega_{\rm p}=0.68\pm0.47$ for KIC8524425 and $0.72\pm0.37$ for KIC5955122. This result shows that the internal transport of angular momentum has to occur faster than the timescale at which differential rotation is forced in these stars (between 300 Myr and 600 Myr). By modeling the additional transport of angular momentum as a diffusive process with a constant viscosity $\nu_{\rm add}$, we found that values of $\nu_{\rm add}>5\times10^4$~cm$^2$.s$^{-1}$ are required to account for the internal rotation of KIC8524425, and $\nu_{\rm add}>1.5\times10^5$~cm$^2$.s$^{-1}$ for KIC5955122. These values are lower than or comparable to the efficiency of the core-envelope coupling during the main sequence, as given by the surface rotation of stars in open clusters. On the other hand, they are higher than the viscosity needed to reproduce the rotation of subgiants near the base of the RGB. Our results yield further evidence that the efficiency of the internal redistribution of angular momentum decreases during the subgiant phase.