{ "id": "2005.13726", "version": "v1", "published": "2020-05-28T01:14:25.000Z", "updated": "2020-05-28T01:14:25.000Z", "title": "Arithmetic Groups and the Lehmer Conjecture", "authors": [ "Lam Pham", "François Thilmany" ], "comment": "16 pages", "categories": [ "math.GR", "math.NT" ], "abstract": "In this paper, we generalize a result of Sury and show that uniform discreteness of cocompact lattices in higher rank semisimple Lie groups is equivalent to a weak form of Lehmer's conjecture. We also survey some related conjectures.", "revisions": [ { "version": "v1", "updated": "2020-05-28T01:14:25.000Z" } ], "analyses": { "subjects": [ "22E40", "20G30", "11E57" ], "keywords": [ "lehmer conjecture", "arithmetic groups", "higher rank semisimple lie groups", "cocompact lattices", "uniform discreteness" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }