arXiv Analytics

Sign in

arXiv:2005.10825 [cs.CV]AbstractReferencesReviewsResources

Instance-aware Image Colorization

Jheng-Wei Su, Hung-Kuo Chu, Jia-Bin Huang

Published 2020-05-21Version 1

Image colorization is inherently an ill-posed problem with multi-modal uncertainty. Previous methods leverage the deep neural network to map input grayscale images to plausible color outputs directly. Although these learning-based methods have shown impressive performance, they usually fail on the input images that contain multiple objects. The leading cause is that existing models perform learning and colorization on the entire image. In the absence of a clear figure-ground separation, these models cannot effectively locate and learn meaningful object-level semantics. In this paper, we propose a method for achieving instance-aware colorization. Our network architecture leverages an off-the-shelf object detector to obtain cropped object images and uses an instance colorization network to extract object-level features. We use a similar network to extract the full-image features and apply a fusion module to full object-level and image-level features to predict the final colors. Both colorization networks and fusion modules are learned from a large-scale dataset. Experimental results show that our work outperforms existing methods on different quality metrics and achieves state-of-the-art performance on image colorization.

Comments: CVPR 2020. Project: Code:
Categories: cs.CV
Related articles: Most relevant | Search more
arXiv:1707.07312 [cs.CV] (Published 2017-07-23)
A new take on measuring nutritional density: The feasibility of using a deep neural network to assess commercially-prepared puree concentrations
arXiv:1811.02797 [cs.CV] (Published 2018-11-07)
Deep Neural Networks for ECG-free Cardiac Phase and End-Diastolic Frame Detection on Coronary Angiographies
arXiv:1811.02644 [cs.CV] (Published 2018-10-25)
DeepDPM: Dynamic Population Mapping via Deep Neural Network