arXiv Analytics

Sign in

arXiv:2005.10814 [cond-mat.stat-mech]AbstractReferencesReviewsResources

Information scrambling at finite temperature in local quantum systems

Subhayan Sahu, Brian Swingle

Published 2020-05-21Version 1

This paper investigates the temperature dependence of quantum information scrambling in local systems with an energy gap, $m$, above the ground state. We study the speed and shape of growing Heisenberg operators as quantified by out-of-time-order correlators, with particular attention paid to so-called contour dependence, i.e. dependence on the way operators are distributed around the thermal circle. We report large scale tensor network numerics on a gapped chaotic spin chain down to temperatures comparable to the gap which show that the speed of operator growth is strongly contour dependent. The numerics also show a characteristic broadening of the operator wavefront at finite temperature $T$. To study the behavior at temperatures much below the gap, we perform a perturbative calculation in the paramagnetic phase of a 2+1D O($N$) non-linear sigma model, which is analytically tractable at large $N$. Using the ladder diagram technique, we find that operators spread at a speed $\sqrt{T/m}$ at low temperatures, $T\ll m$. In contrast to the numerical findings of spin chain, the large $N$ computation is insensitive to the contour dependence and does not show broadening of operator front. We discuss these results in the context of a recently proposed state-dependent bound on scrambling.

Related articles: Most relevant | Search more
Entanglement of Free Fermions and Bosons at Finite Temperature
Signatures of information scrambling in the dynamics of the entanglement spectrum
Quantum Decoherence at Finite Temperatures