arXiv Analytics

Sign in

arXiv:2003.03857 [math.PR]AbstractReferencesReviewsResources

Limiting distributions for eigenvalues of sample correlation matrices from heavy-tailed populations

Johannes Heiny, Jianfeng Yao

Published 2020-03-08Version 1

Consider a $p$-dimensional population ${\mathbf x} \in\mathbb{R}^p$ with iid coordinates in the domain of attraction of a stable distribution with index $\alpha\in (0,2)$. Since the variance of ${\mathbf x}$ is infinite, the sample covariance matrix ${\mathbf S}_n=n^{-1}\sum_{i=1}^n {{\mathbf x}_i}{\mathbf x}'_i$ based on a sample ${\mathbf x}_1,\ldots,{\mathbf x}_n$ from the population is not well behaved and it is of interest to use instead the sample correlation matrix ${\mathbf R}_n= \{\operatorname{diag}({\mathbf S}_n)\}^{-1/2}\, {\mathbf S}_n \{\operatorname{diag}({\mathbf S}_n)\}^{-1/2}$. This paper finds the limiting distributions of the eigenvalues of ${\mathbf R}_n$ when both the dimension $p$ and the sample size $n$ grow to infinity such that $p/n\to \gamma \in (0,\infty)$. The family of limiting distributions $\{H_{\alpha,\gamma}\}$ is new and depends on the two parameters $\alpha$ and $\gamma$. The moments of $H_{\alpha,\gamma}$ are fully identified as sum of two contributions: the first from the classical Mar\v{c}enko-Pastur law and a second due to heavy tails. Moreover, the family $\{H_{\alpha,\gamma}\}$ has continuous extensions at the boundaries $\alpha=2$ and $\alpha=0$ leading to the Mar\v{c}enko-Pastur law and a modified Poisson distribution, respectively. Our proofs use the method of moments, the path-shortening algorithm developed in [18] and some novel graph counting combinatorics. As a consequence, the moments of $H_{\alpha,\gamma}$ are expressed in terms of combinatorial objects such as Stirling numbers of the second kind. A simulation study on these limiting distributions $H_{\alpha,\gamma}$ is also provided for comparison with the Mar\v{c}enko-Pastur law.

Related articles: Most relevant | Search more
arXiv:2001.11459 [math.PR] (Published 2020-01-30)
Almost sure convergence of the largest and smallest eigenvalues of high-dimensional sample correlation matrices
arXiv:2208.14948 [math.PR] (Published 2022-08-31)
Limiting spectral distribution for large sample correlation matrices
arXiv:1011.3164 [math.PR] (Published 2010-11-13)
On Jiang's asymptotic distribution of the largest entry of a sample correlation matrix