{ "id": "2002.10854", "version": "v1", "published": "2020-02-25T13:46:02.000Z", "updated": "2020-02-25T13:46:02.000Z", "title": "Arithmetic complexity revisited", "authors": [ "Igor Nikolaev" ], "comment": "8 pages", "categories": [ "math.NT", "math.OA" ], "abstract": "The arithmetic complexity $c(\\mathscr{A}_{\\theta})$ is a non-commutative measure of the ranks of elliptic curves $\\mathscr{E}(K)=\\mathbf{Z}^r \\oplus \\mathscr{E}_{tors}$. The $c(\\mathscr{A}_{\\theta})$ is equal to the dimension of a connected component $V_{N,k}^0$ of the Brock-Elkies-Jordan variety associated to a periodic continued fraction $\\theta=[b_1,\\dots, b_N, \\overline{a_1,\\dots,a_k}]$. We prove that the $V_{N,k}^0$ is a fiber bundle over the Fermat-Pell conic with the structure group $\\mathscr{E}_{tors}$ and the fiber an $r$-dimensional affine space. The result is used to evaluate the Tate-Shafarevich group of $\\mathscr{E}(K)$.", "revisions": [ { "version": "v1", "updated": "2020-02-25T13:46:02.000Z" } ], "analyses": { "subjects": [ "11G05", "46L85" ], "keywords": [ "arithmetic complexity", "dimensional affine space", "tate-shafarevich group", "elliptic curves", "structure group" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }