{ "id": "1912.12754", "version": "v1", "published": "2019-12-29T23:09:19.000Z", "updated": "2019-12-29T23:09:19.000Z", "title": "On the occurrence of Hecke eigenvalues in sectors", "authors": [ "Nahid Walji" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "Let $\\pi$ be a non-self-dual unitary cuspidal automorphic representation of non-solvable polyhedral type for GL(2) over a number field. We show that $\\pi$ has a positive upper Dirichlet density of Hecke eigenvalues in any sector whose angle is at least 2.64 radians.", "revisions": [ { "version": "v1", "updated": "2019-12-29T23:09:19.000Z" } ], "analyses": { "subjects": [ "11F30", "11F41", "11F66" ], "keywords": [ "hecke eigenvalues", "non-self-dual unitary cuspidal automorphic representation", "occurrence", "positive upper dirichlet density", "non-solvable polyhedral type" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }