{ "id": "1912.05041", "version": "v1", "published": "2019-12-10T23:14:02.000Z", "updated": "2019-12-10T23:14:02.000Z", "title": "Lower order terms of the one level density of a family of quadratic Hecke $L$-functions", "authors": [ "Peng Gao", "Liangyi Zhao" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we study lower order terms of the $1$-level density of low-lying zeros of quadratic Hecke L-functions in the Gaussian field. Assuming the Generalized Riemann Hypothesis, our result is valid for even test functions whose Fourier transforms are supported in $(-2, 2)$.", "revisions": [ { "version": "v1", "updated": "2019-12-10T23:14:02.000Z" } ], "analyses": { "keywords": [ "level density", "study lower order terms", "quadratic hecke l-functions", "gaussian field", "generalized riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }