{ "id": "1910.02999", "version": "v1", "published": "2019-10-07T18:36:11.000Z", "updated": "2019-10-07T18:36:11.000Z", "title": "Universality for 1 d random band matrices", "authors": [ "Mariya Shcherbina", "Tatyana Shcherbina" ], "comment": "47 p", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider 1d random Hermitian $N\\times N$ block band matrices consisting of $W\\times W$ random Gaussian blocks (parametrized by $j,k \\in\\Lambda=[1,n]\\cap \\mathbb{Z}$, $N=nW$) with a fixed entry's variance $J_{jk}=W^{-1}(\\delta_{j,k}+\\beta\\Delta_{j,k})$ in each block. Considering the limit $W, n\\to\\infty$, we prove that the behaviour of the second correlation function of such matrices in the bulk of the spectrum, as $W\\gg \\sqrt{N}$, is determined by the Wigner -- Dyson statistics. The method of the proof is based on the rigorous application of supersymmetric transfer matrix approach developed in [Shcherbina, M., Shcherbina, T.:Universality for 1d random band matrices: sigma-model approximation, J.Stat.Phys. 172, p. 627 -- 664 (2018)]", "revisions": [ { "version": "v1", "updated": "2019-10-07T18:36:11.000Z" } ], "analyses": { "keywords": [ "universality", "1d random band matrices", "supersymmetric transfer matrix approach", "random gaussian blocks", "1d random hermitian" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }