arXiv Analytics

Sign in

arXiv:1909.04643 [math.AT]AbstractReferencesReviewsResources

The Homotopy Types of $SU(4)$-Gauge Groups

Tyrone Cutler, Stephen Theriault

Published 2019-09-10Version 1

Let $\mathcal{G}_k$ be the gauge group of the principal $SU(4)$-bundle over $S^4$ with second Chern class $k$ and let $p$ be a prime. We show that there is a rational or $p$-local homotopy equivalence $\Omega\mathcal{G}_k\simeq\Omega\mathcal{G}_{k'}$ if and only if $(60,k)=(60,k')$.

Comments: 17 pages
Categories: math.AT
Subjects: 55P15, 54C35
Related articles: Most relevant | Search more
arXiv:1807.01931 [math.AT] (Published 2018-07-05)
Homotopy types of $SU(n)$-gauge groups over non-spin 4-manifolds
arXiv:math/0311509 [math.AT] (Published 2003-11-27)
Algebraic Models for Homotopy Types
arXiv:1907.02930 [math.AT] (Published 2019-07-05)
The homotopy types of $U(n)$-gauge groups over lens spaces