{ "id": "1909.04462", "version": "v1", "published": "2019-09-10T13:15:33.000Z", "updated": "2019-09-10T13:15:33.000Z", "title": "Lower bounds for periods of Ducci sequences", "authors": [ "Florian Breuer", "Igor E. Shparlinski" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "A Ducci sequence is a sequence of integer $n$-tuples obtained by iterating the map \\[ D : (a_1, a_2, \\ldots, a_n) \\mapsto \\big(|a_1-a_2|,|a_2-a_3|,\\ldots,|a_n-a_1|\\big). \\] Such a sequence is eventually periodic and we denote by $P(n)$ the maximal period of such sequences for given $n$. We prove lower bounds for $P(n)$ by counting certain partitions.", "revisions": [ { "version": "v1", "updated": "2019-09-10T13:15:33.000Z" } ], "analyses": { "subjects": [ "11B83", "11P83", "11T30" ], "keywords": [ "ducci sequence", "lower bounds", "maximal period", "partitions" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }