{ "id": "1908.05481", "version": "v1", "published": "2019-08-15T10:27:32.000Z", "updated": "2019-08-15T10:27:32.000Z", "title": "Planar cubic graphs of small diameter", "authors": [ "Kolja Knauer", "Piotr Micek" ], "comment": "2 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "Cubic planar $n$-vertex graphs with faces of length at most $6$, e.g., fullerene graphs, have diameter in $\\Omega(\\sqrt{n})$. It has been suspected, that a similar result can be shown for cubic planar graphs with faces of bounded length. This note provides a family of cubic planar $n$-vertex graphs with faces of length at most $7$ and diameter in ${O}(\\log n)$, thus refuting the above suspicion.", "revisions": [ { "version": "v1", "updated": "2019-08-15T10:27:32.000Z" } ], "analyses": { "keywords": [ "planar cubic graphs", "small diameter", "vertex graphs", "cubic planar graphs", "fullerene graphs" ], "note": { "typesetting": "TeX", "pages": 2, "language": "en", "license": "arXiv", "status": "editable" } } }