arXiv Analytics

Sign in

arXiv:1907.08189 [astro-ph.IM]AbstractReferencesReviewsResources

Comparing Multi-class, Binary and Hierarchical Machine Learning Classification schemes for variable stars

Zafiirah Hosenie, Robert Lyon, Benjamin Stappers, Arrykrishna Mootoovaloo

Published 2019-07-18Version 1

Upcoming synoptic surveys are set to generate an unprecedented amount of data. This requires an automatic framework that can quickly and efficiently provide classification labels for several new object classification challenges. Using data describing 11 types of variable stars from the Catalina Real-Time Transient Surveys (CRTS), we illustrate how to capture the most important information from computed features and describe detailed methods of how to robustly use Information Theory for feature selection and evaluation. We apply three Machine Learning (ML) algorithms and demonstrate how to optimize these classifiers via cross-validation techniques. For the CRTS dataset, we find that the Random Forest (RF) classifier performs best in terms of balanced-accuracy and geometric means. We demonstrate substantially improved classification results by converting the multi-class problem into a binary classification task, achieving a balanced-accuracy rate of $\sim$99 per cent for the classification of ${\delta}$-Scuti and Anomalous Cepheids (ACEP). Additionally, we describe how classification performance can be improved via converting a 'flat-multi-class' problem into a hierarchical taxonomy. We develop a new hierarchical structure and propose a new set of classification features, enabling the accurate identification of subtypes of cepheids, RR Lyrae and eclipsing binary stars in CRTS data.

Related articles: Most relevant | Search more
arXiv:1601.03013 [astro-ph.IM] (Published 2016-01-12)
Meta Classification for Variable Stars
arXiv:1701.00484 [astro-ph.IM] (Published 2017-01-02)
Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica
Lingzhi Wang et al.
arXiv:1801.09723 [astro-ph.IM] (Published 2018-01-29)
Unsupervised Classification of Variable Stars