{ "id": "1907.02262", "version": "v1", "published": "2019-07-04T07:59:12.000Z", "updated": "2019-07-04T07:59:12.000Z", "title": "Finite axiomatizability for profinite groups I: group theory", "authors": [ "Andre Nies", "Dan Segal", "Katrin Tent" ], "categories": [ "math.GR", "math.LO" ], "abstract": "A group is $\\textit{finitely axiomatizable}$ (FA) in a class $\\mathcal{C}$ if it can be determined up to isomorphism within $\\mathcal{C}$ by a sentence in the first-order language of group theory. We show that profinite groups of various kinds are FA in the class of profinite groups. Reasons why certain groups cannot be FA are also discussed.", "revisions": [ { "version": "v1", "updated": "2019-07-04T07:59:12.000Z" } ], "analyses": { "subjects": [ "20A15", "20E18" ], "keywords": [ "profinite groups", "group theory", "finite axiomatizability", "first-order language" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }