{ "id": "1905.00815", "version": "v1", "published": "2019-05-02T15:43:14.000Z", "updated": "2019-05-02T15:43:14.000Z", "title": "On Two Conjectures about the Sum of Element Orders", "authors": [ "Morteza Baniasad Azad", "Behrooz Khosravi" ], "comment": "8 pages", "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group and $\\psi(G) = \\sum_{g \\in G} o(g)$, where $o(g)$ denotes the order of $g \\in G$. First, we prove that if $G$ is a group of order $n$ and $\\psi(G) >31\\psi(C_n)/77$, where $C_n$ is the cyclic group of order $n$, then $G$ is supersolvable. This proves a conjecture of M.~{T\\u{a}rn\\u{a}uceanu}. Moreover, M. Herzog, P. Longobardi and M. Maj put forward the following conjecture: If $H\\leq G$, then $\\psi(G) \\leqslant \\psi(H) |G:H|^2$. In the sequel, by an example we show that this conjecture is not satisfied in general.", "revisions": [ { "version": "v1", "updated": "2019-05-02T15:43:14.000Z" } ], "analyses": { "subjects": [ "20D60", "20F16" ], "keywords": [ "element orders", "conjecture", "finite group", "cyclic group" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }