{ "id": "1902.10072", "version": "v1", "published": "2019-02-26T17:32:29.000Z", "updated": "2019-02-26T17:32:29.000Z", "title": "Energy conditional measures and 2D turbulence", "authors": [ "Franco Flandoli", "Dejun Luo" ], "comment": "21 pages", "categories": [ "math-ph", "math.MP", "math.PR" ], "abstract": "We show that the invariant measure of point vortices, when conditioning the Hamiltonian to a finite interval, converges weakly to the enstrophy measure by conditioning the renormalized energy to the same interval. We also prove the existence of solutions to 2D Euler equations having the energy conditional measure as invariant measure.", "revisions": [ { "version": "v1", "updated": "2019-02-26T17:32:29.000Z" } ], "analyses": { "keywords": [ "energy conditional measure", "2d turbulence", "invariant measure", "2d euler equations", "finite interval" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }