{ "id": "1901.04837", "version": "v1", "published": "2019-01-15T15:59:29.000Z", "updated": "2019-01-15T15:59:29.000Z", "title": "On some determinants involving the tangent function", "authors": [ "Zhi-Wei Sun" ], "comment": "18 pages", "categories": [ "math.NT" ], "abstract": "Let $p$ be an odd prime and let $a,b\\in\\mathbb Z$ with $p\\nmid ab$. In this paper we mainly evaluate $$T_p^{(\\delta)}(a,b):=\\det\\left[\\tan\\pi\\frac{aj^2+bk^2}p\\right]_{\\delta\\le j,k\\le (p-1)/2}\\ \\ (\\delta=0,1).$$ For example, in the case $p\\equiv3\\pmod4$ we show that $T_p^{(1)}(a,b)=0$ and $$T_p^{(0)}(a,b)=\\begin{cases} 2^{(p-1)/2}p^{(p+1)/4}&\\text{if}\\ (\\frac{ab}p)=1, \\\\p^{(p+1)/4}&\\text{if}\\ (\\frac{ab}p)=-1.\\end{cases}$$ When $(\\frac{-ab}p)=-1$, we also evaluate the determinant $\\det[\\cot\\pi\\frac{aj^2+bk^2}p]_{1\\le j,k\\le(p-1)/2}.$ We also pose several conjectures one of which states that the class number of the quadratic field $\\mathbb Q(\\sqrt{p^*})$ with $p^*=(-1)^{(p-1)/2}p$ is equal to $$\\left(\\frac{-2}p\\right)2^{-(p-3)/2}p^{-(p-5)/4}\\det\\left[\\cot\\pi\\frac{jk}p\\right]_{1\\ls j,k\\ls (p-1)/2}.$$", "revisions": [ { "version": "v1", "updated": "2019-01-15T15:59:29.000Z" } ], "analyses": { "subjects": [ "11C20", "33B10", "11A15", "15A99" ], "keywords": [ "tangent function", "determinant", "odd prime", "class number", "quadratic field" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }