arXiv Analytics

Sign in

arXiv:1901.03320 [cond-mat.supr-con]AbstractReferencesReviewsResources

Half-filled Stripes in a Hole-Doped Three-Orbital Spin-Fermion Model for Cuprates

Mostafa Sherif Derbala Aly Hussein, Elbio Dagotto, Adriana Moreo

Published 2019-01-10Version 1

Using Monte Carlo techniques, we study a three-orbital CuO$_2$ spin-fermion model for copper-based high critical temperature superconductors that captures the charge-transfer properties of these compounds. Our studies reveal the presence of spin order in the parent compound and, more importantly, stripe spin and charge order under hole doping. Due to the $p$-$d$ orbital hybridizati on, the added holes are approximately equally distributed among the two $p$ orbitals of the oxygen atoms and the $d$ orbital of the copper atoms in the unit cell. In rectangular clusters of dimension $16\times 4$ %that break the $\pi/2$ lattice rotational symmetry, {\it half-filled} stripes are observed upon hole doping, namely when $N_h=2n$ holes are introduced in the system then $n$ stripes of length 4 are formed along the short direction. The original antiferromagnetic order observed in the parent compound develops a $\pi-$shift across each stripe and the magnetic structure factor has a peak at wavevector ${\bf k}=(\pi-\delta,\pi)$ with $\delta=2\pi N_h/N=\pi N_h/2L$, where $L=16$. The electronic charge is also modulated and the charge structure factor is maximized at ${\bf k}=(2\delta,0)$. As electrons are removed from the system, intracell orbital nematicity with $\langle n_{p_x}\rangle-\langle n_{p_y}\rangle\ne 0$ dev elops in the oxygen sector, as well as intercell magnetic nematicity with $\langle S^z_{{\bf i},d}(S^z_{{\bf i}+{\bf x},d}-S^z_{{\bf i}+{\ bf y},d})\rangle\ne 0$ in the spin copper sector, in the standard notation. This occurs not only in rectangular but also in square 8$\times$8 lattices. Overall, our results suggest that the essence of the stripe spin and charge distribution experimentally observed in hole-doped cuprates are captured by unbiased Monte Carlo studies of a simple hole-doped charge-transfer insulator CuO$_2$ spin-fermion model.

Related articles:
arXiv:cond-mat/0305135 (Published 2003-05-07, updated 2004-04-19)
Theory of the Diamagnetism Above the Critical Temperature for Cuprates
arXiv:cond-mat/0003213 (Published 2000-03-13)
Anomalous Proximity Effect in Underdoped YBaCuO Josephson Junctions
arXiv:cond-mat/0607075 (Published 2006-07-04, updated 2007-01-19)
Nernst effect and Critical Field in Cuprate Superconductors