{ "id": "1812.04309", "version": "v1", "published": "2018-12-11T10:01:50.000Z", "updated": "2018-12-11T10:01:50.000Z", "title": "An arithmetical function related to Báez-Duarte's criterion for the Riemann hypothesis", "authors": [ "Michel Balazard" ], "comment": "Harmonic Analysis and Applications (Michael Th. Rassias, ed.), In press", "categories": [ "math.NT" ], "abstract": "In this mainly expository article, we revisit some formal aspects of B{\\'a}ez-Duarte's criterion for the Riemann hypothesis. In particular, starting from Weingartner's formulation of the criterion, we define an arithmetical function $\\nu$, which is equal to the M{\\\"o}bius function if, and only if the Riemann hypothesis is true. We record the basic properties of the Dirichlet series of $\\nu$, and state a few questions. KEYWORDS: Riemann hypothesis, arithmetical functions, Dirichlet series, Hilbert space", "revisions": [ { "version": "v1", "updated": "2018-12-11T10:01:50.000Z" } ], "analyses": { "subjects": [ "11M26" ], "keywords": [ "riemann hypothesis", "arithmetical function", "báez-duartes criterion", "dirichlet series", "expository article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }