arXiv Analytics

Sign in

arXiv:1812.02714 [nucl-th]AbstractReferencesReviewsResources

Defining the Proton Radius: a Unified Treatment

Gerald A. Miller

Published 2018-12-06Version 1

Background: There is significant current interest in knowing the value of the proton radius and also its proper definition. Purpose: Combine the disparate literatures of hydrogen spectroscopy and diverse modern parton distributions to show that the quantity $r_p^2\equiv -6 G_E'(0)$ is the relativistically proper definition that originates from the separate bodies of work. Methods: Use perturbation theory, light-front dynamics and elementary techniques to find relativistically correct definitions of the proton radius and charge density. Results: It is found that the very same proton radius is accessed by measurements of hydrogen spectroscopy and elastic lepton scattering. The derivation of the mean-square radius as a moment of a spherically symmetric three-dimensional density is shown to be incorrect. A relativistically-correct, two-dimensional charge density is related to the diverse modern literature of various parton distributions. Relativistically invariant moments thereof are derived in a new moment expansion, the RME.

Related articles: Most relevant | Search more
arXiv:1812.04444 [nucl-th] (Published 2018-12-07)
Sensitivity of the elastic electron-proton cross section to the proton radius
arXiv:1610.09760 [nucl-th] (Published 2016-10-31)
Proton radius from electron-proton scattering and chiral perturbation theory
arXiv:1006.2034 [nucl-th] (Published 2010-06-10)
Neutron-Proton Radii in N \approx Z Nuclei