{ "id": "1811.05209", "version": "v1", "published": "2018-11-13T11:00:15.000Z", "updated": "2018-11-13T11:00:15.000Z", "title": "Quantitative $C_p$ estimates for Calderón-Zygmund operators", "authors": [ "Javier Canto" ], "categories": [ "math.CA" ], "abstract": "We prove an appropriate quantitative reverse H\\\"older inequality for the $C_p$ class of weights from which we obtain as a limiting case the sharp reverse H\\\"older inequality for the $A_\\infty$ class of weights. We use this result to provide a quantitative weighted norm inequality between Calder\\'on-Zygmund operators and the Hardy-Littlewood maximal function, precisely $$||Tf||_{L^p(w)} \\lesssim_{T,n,p,q} [w]_{C_q}(1+\\log^+[w]_{C_q})||Mf||_{L^p(w)},$$ for $w\\in C_q$ and $q>p>1$ improving Sawyer's theorem.", "revisions": [ { "version": "v1", "updated": "2018-11-13T11:00:15.000Z" } ], "analyses": { "keywords": [ "calderón-zygmund operators", "hardy-littlewood maximal function", "improving sawyers theorem", "quantitative weighted norm inequality", "sharp reverse" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }