arXiv Analytics

Sign in

arXiv:1811.04564 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Photogalvanic currents in dynamically gapped Dirac materials

V. M. Kovalev, I. G. Savenko

Published 2018-11-12Version 1

We develop a microscopic theory of an unconventional photogalvanic effect in two-dimensional materials with the Dirac energy spectrum of the carriers of charge under strong driving. As a test bed, we consider a layer of a transition metal dichalcogenide, exposed to two different electromagnetic fields. The first pumping field is circularly-polarized, and its frequency exceeds the material bandgap. It creates an extremely nonequilibrium distribution of electrons and holes in one valley (K) and opens dynamical gaps, whereas the other valley (K') remains empty due to the valley-dependent interband selection rules. The second probe field has the frequency much smaller than the material bandgap. It generates intraband perturbations of the nonequilibrium carriers density, resulting in the photogalvanic current due to the trigonal asymmetry of the dispersions. This current shows threshold-like behavior due to the dynamical gap opening and renormalizations of the density of states and velocity of quasiparticles.

Related articles: Most relevant | Search more
arXiv:1901.01294 [cond-mat.mes-hall] (Published 2019-01-04)
The gate-tunable strong and fragile topology of multilayer-graphene on a transition metal dichalcogenide
arXiv:2011.02642 [cond-mat.mes-hall] (Published 2020-11-05)
Tailoring Dzyaloshinskii-Moriya interaction in a transition metal dichalcogenide by dual-intercalation
Guolin Zheng et al.
arXiv:1706.08973 [cond-mat.mes-hall] (Published 2017-06-27)
Optimal charge-to-spin conversion in graphene on transition metal dichalcogenide