{ "id": "1811.02556", "version": "v1", "published": "2018-11-06T18:57:00.000Z", "updated": "2018-11-06T18:57:00.000Z", "title": "On error term estimates à la Walfisz for mean values of arithmetic functions", "authors": [ "Yuta Suzuki" ], "comment": "32 pages", "categories": [ "math.NT" ], "abstract": "Walfisz (1963) proved the asymptotic formula \\[ \\sum_{n\\le x}\\varphi(n) = \\frac{3}{\\pi^2}x^2+O(x(\\log x)^{\\frac{2}{3}}(\\log\\log x)^{\\frac{4}{3}}), \\] which improved the error term estimate of Mertens (1874) and had been the best possible estimate for more than 50 years. Recently, H.-Q. Liu (2016) improved Walfisz's error term estimate to \\[ \\sum_{n\\le x}\\varphi(n) = \\frac{3}{\\pi^2}x^2+O(x(\\log x)^{\\frac{2}{3}}(\\log\\log x)^{\\frac{1}{3}}). \\] We generalize Liu's result to a certain class of arithmetic functions and improve the result of Balakrishnan and P\\'etermann (1996). To this end, we provide a refined version of Vinogradov's combinatorial decomposition available for a wider class of multiplicative functions.", "revisions": [ { "version": "v1", "updated": "2018-11-06T18:57:00.000Z" } ], "analyses": { "subjects": [ "11N37", "11L07" ], "keywords": [ "arithmetic functions", "mean values", "walfiszs error term estimate", "vinogradovs combinatorial decomposition", "wider class" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }