{ "id": "1810.03786", "version": "v1", "published": "2018-10-09T03:06:38.000Z", "updated": "2018-10-09T03:06:38.000Z", "title": "A counterexample for the conjecture of finite simple groups", "authors": [ "Wujie Shi" ], "comment": "5 pages", "categories": [ "math.GR" ], "abstract": "In this note we provide some counterexamples for the conjectures of finite simple groups, one of the conjectures said \"all finite simple groups $G$ can be determined using their orders $|G|$ and the number of elements of order $p$, where $p$ the largest prime divisor of $|G|$\".", "revisions": [ { "version": "v1", "updated": "2018-10-09T03:06:38.000Z" } ], "analyses": { "subjects": [ "20D05", "20D60" ], "keywords": [ "finite simple groups", "conjecture", "counterexample", "largest prime divisor" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }