{ "id": "1809.10332", "version": "v1", "published": "2018-09-27T03:34:59.000Z", "updated": "2018-09-27T03:34:59.000Z", "title": "Commensurability growths of algebraic groups", "authors": [ "Khalid Bou-Rabee", "Tasho Kaletha", "Daniel Studenmund" ], "comment": "9 pages", "categories": [ "math.GR", "math.RT" ], "abstract": "Fixing a subgroup $\\Gamma$ in a group $G$, the full commensurability growth function assigns to each $n$ the cardinality of the set of subgroups $\\Delta$ of $G$ with $[\\Gamma: \\Gamma \\cap \\Delta][\\Delta : \\Gamma \\cap \\Delta] \\leq n$. For pairs $\\Gamma \\leq G$, where $G$ is a Chevalley group scheme defined over $\\mathbb{Z}$ and $\\Gamma$ is an arithmetic lattice in $G$, we give precise estimates for the full commensurability growth, relating it to subgroup growth and a computable invariant that depends only on $G$.", "revisions": [ { "version": "v1", "updated": "2018-09-27T03:34:59.000Z" } ], "analyses": { "subjects": [ "20E26", "20G05", "20G20", "20G25" ], "keywords": [ "algebraic groups", "full commensurability growth function assigns", "chevalley group scheme", "subgroup growth", "precise estimates" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }