{ "id": "1809.04761", "version": "v1", "published": "2018-09-13T04:01:48.000Z", "updated": "2018-09-13T04:01:48.000Z", "title": "Hyperbolic Immersions of Free Groups", "authors": [ "Jean Pierre Mutanguha" ], "comment": "19 pages, 4 figures", "categories": [ "math.GR" ], "abstract": "We prove that the mapping torus of a graph immersion has word-hyperbolic fundamental group if and only if the corresponding endomorphism doesn't produce Baumslag-Solitar subgroups. Due to a result by Reynolds, this theorem applies to all nonsurjective fully irreducible endomorphisms. We also give a framework for proving the general statement without the immersion assumption.", "revisions": [ { "version": "v1", "updated": "2018-09-13T04:01:48.000Z" } ], "analyses": { "subjects": [ "20F65", "20E05", "20F67" ], "keywords": [ "free groups", "hyperbolic immersions", "word-hyperbolic fundamental group", "produce baumslag-solitar subgroups", "immersion assumption" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }