{ "id": "1807.11642", "version": "v1", "published": "2018-07-31T02:50:47.000Z", "updated": "2018-07-31T02:50:47.000Z", "title": "Extreme values for $S_n(σ,t)$ near the critical line", "authors": [ "Andrés Chirre" ], "categories": [ "math.NT" ], "abstract": "Let $S(\\sigma,t)=\\frac{1}{\\pi}\\arg\\zeta(\\sigma+it)$ be the argument of the Riemann zeta function at the point $\\sigma+it$ of the critical strip. For $n\\geq 1$ and $t>0$ we define $$ S_{n}(\\sigma,t) = \\int_0^t S_{n-1}(\\sigma,\\tau)\\,d\\tau\\, + \\delta_{n,\\sigma\\,}, $$ where $\\delta_{n,\\sigma}$ is a specific constant depending on $\\sigma$ and $n$. Let $0\\leq \\beta<1$ be a fixed real number. Assuming the Riemann hypothesis, we show lower bounds for the maximum of the function $S_n(\\sigma,t)$ on the interval $T^\\beta\\leq t \\leq T$ and near to the critical line, when $n\\equiv 1\\mod 4$. Similar estimates are obtained for $|S_n(\\sigma,t)|$ when $n\\not\\equiv 1\\mod 4$. This extends a recently results of Bondarenko and Seip for a region near the critical line. In particular we obtain some omega results for these functions on the critical line.", "revisions": [ { "version": "v1", "updated": "2018-07-31T02:50:47.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26", "11N37" ], "keywords": [ "critical line", "extreme values", "riemann zeta function", "omega results", "similar estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }