arXiv Analytics

Sign in

arXiv:1801.06158 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Local free energy approximations for the coarse-graining of adsorption phenomena

Federico G. Pazzona, Giovanni Pireddu, Andrea Gabrieli, Alberto M. Pintus, Pierfranco Demontis

Published 2018-01-18Version 1

We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted approach, in which the contributions to the free energy given by the molecules located in two neighboring pores are estimated through Monte Carlo simulations where the two pores are kept separated from the rest of the system, leads to inaccurate results at high sorbate densities. In the coarse-graining strategy that we propose, which is based on the Bethe-Peierls approximation, density-independent interaction terms are instead computed according to local effective potentials that take into account the correlations between the pore pair and its surroundings by means of mean-field correction terms, without the need of simulating the pore pair separately. Use of the interaction parameters obtained this way allows the coarse-grained system to reproduce more closely the equilibrium properties of the original one. Results are shown for lattice-gases where the local free energy can be computed exactly, and for a system of Lennard-Jones particles under the effect of a static confining field.