arXiv Analytics

Sign in

arXiv:1801.03909 [physics.flu-dyn]AbstractReferencesReviewsResources

Nonlinear water waves in shallow water in the presence of constant vorticity: A Whitham approach

Christian Kharif, Malek Abid

Published 2018-01-11Version 1

Two-dimensional nonlinear gravity waves travelling in shallow water on a vertically sheared current of constant vorticity are considered. Using Euler equations, in the shallow water approximation, hyperbolic equations for the surface elevation and the horizontal velocity are derived. Using Riemann invariants of these equations, that are obtained analytically, a closed-form nonlinear evolution equation for the surface elevation is derived. A dispersive term is added to this equation using the exact linear dispersion relation. With this new single first-order partial differential equation, vorticity effects on undular bores are studied. Within the framework of weakly nonlinear waves, a KdV-type equation and a Whitham equation with constant vorticity are derived from this new model and the effect of vorticity on solitary waves and periodic waves is considered. Futhermore, within the framework of the new model and the Whitham equation a study of the effect of vorticity on the breaking time of dispersive waves and hyperbolic waves as well is carried out.

Related articles: Most relevant | Search more
arXiv:1311.1073 [physics.flu-dyn] (Published 2013-11-05, updated 2014-01-08)
How linear surface waves are affected by a current with constant vorticity
arXiv:1704.03643 [physics.flu-dyn] (Published 2017-04-12)
Explicit equations for two-dimensional water waves with constant vorticity
arXiv:1702.06275 [physics.flu-dyn] (Published 2017-02-21)
Time-frequency analysis of ship wave patterns in shallow water: modelling and experiments