{ "id": "1711.08755", "version": "v1", "published": "2017-11-23T16:11:12.000Z", "updated": "2017-11-23T16:11:12.000Z", "title": "The geometry of one-relator groups satisfying a polynomial isoperimetric inequality", "authors": [ "Giles Gardam", "Daniel J. Woodhouse" ], "comment": "5 pages, 1 figure", "categories": [ "math.GR" ], "abstract": "For every pair of positive integers $p > q$ we construct a one-relator group $R_{p,q}$ whose Dehn function is $\\simeq n^\\alpha$ where $\\alpha = 2 \\log_2(2p / q)$. The group $R_{p,q}$ has no subgroup isomorphic to a Baumslag-Solitar group $BS(m,n)$ with $m \\neq \\pm n$, but is not automatic, not CAT(0), and cannot act freely on a CAT(0) cube complex. This answers a long-standing question on the automaticity of one-relator groups and gives counterexamples to a conjecture of Wise.", "revisions": [ { "version": "v1", "updated": "2017-11-23T16:11:12.000Z" } ], "analyses": { "subjects": [ "20F65", "20F67", "20E06", "20F05" ], "keywords": [ "polynomial isoperimetric inequality", "one-relator groups satisfying", "baumslag-solitar group", "subgroup isomorphic", "dehn function" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }