{ "id": "1711.07281", "version": "v1", "published": "2017-11-20T12:19:43.000Z", "updated": "2017-11-20T12:19:43.000Z", "title": "On Poincaré series of half-integral weight", "authors": [ "Sonja Žunar" ], "comment": "21 pages", "categories": [ "math.NT", "math.RT" ], "abstract": "We use Poincar\\'e series of $ K $-finite matrix coefficients of genuine integrable representations of the metaplectic cover of $ \\mathrm{SL}_2(\\mathbb R) $ to construct a spanning set for the space of cusp forms $ S_m(\\Gamma,\\chi) $, where $ \\Gamma $ is a discrete subgroup of finite covolume in the metaplectic cover of $ \\mathrm{SL}_2(\\mathbb R) $, $ \\chi $ is a character of $ \\Gamma $ of finite order, and $ m\\in\\frac52+\\mathbb Z_{\\geq0} $. We give a result on the non-vanishing of the constructed cusp forms and compute their Petersson inner product with any $ f\\in S_m(\\Gamma,\\chi) $. Using this last result, we construct a Poincar\\'e series $ \\Delta_{\\Gamma,k,m,\\xi,\\chi}\\in S_m(\\Gamma,\\chi) $ that corresponds, in the sense of the Riesz representation theorem, to the linear functional $ f\\mapsto f^{(k)}(\\xi) $ on $ S_m(\\Gamma,\\chi) $, where $ \\xi\\in\\mathbb C_{\\Im(z)>0} $ and $ k\\in\\mathbb Z_{\\geq0} $. Under some additional conditions on $ \\Gamma $ and $ \\chi $, we provide the Fourier expansion of cusp forms $ \\Delta_{\\Gamma,k,m,\\xi,\\chi} $ and their expansion in a series of classical Poincar\\'e series.", "revisions": [ { "version": "v1", "updated": "2017-11-20T12:19:43.000Z" } ], "analyses": { "subjects": [ "11F12", "11F37" ], "keywords": [ "half-integral weight", "cusp forms", "metaplectic cover", "finite matrix coefficients", "riesz representation theorem" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }