{ "id": "1711.00180", "version": "v1", "published": "2017-11-01T02:56:50.000Z", "updated": "2017-11-01T02:56:50.000Z", "title": "Diophantine equations involving Euler's totient function", "authors": [ "Yong-Gao Chen", "Hao Tian" ], "comment": "40 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we consider the equations involving Euler's totient function $\\phi$ and Lucas type sequences. In particular, we prove that the equation $\\phi (x^m-y^m)=x^n-y^n$ has no solutions in positive integers $x, y, m, n$ except for the trivial solutions $(x, y, m , n)=(a+1, a, 1, 1)$, where $a$ is a positive integer, and the equation $\\phi ((x^m-y^m)/(x-y))=(x^n-y^n)/(x-y)$ has no solutions in positive integers $x, y, m, n$ except for the trivial solutions $(x, y, m , n)=(a, b, 1, 1)$, where $a, b$ are integers with $a>b\\ge 1$.", "revisions": [ { "version": "v1", "updated": "2017-11-01T02:56:50.000Z" } ], "analyses": { "subjects": [ "11A25", "11D61", "11D72" ], "keywords": [ "eulers totient function", "diophantine equations", "positive integer", "trivial solutions", "lucas type sequences" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }