{ "id": "1709.06445", "version": "v1", "published": "2017-09-18T07:10:08.000Z", "updated": "2017-09-18T07:10:08.000Z", "title": "An elementary property of correlations", "authors": [ "Giovanni Coppola" ], "comment": "Assuming Delange Hypothesis(DH), we prove the \"Ramanujan exact explicit formula\" for $f,g$ correlation; for 2k-twin primes, assuming $(DH)$ we prove Hardy-Littlewood Conjecture", "categories": [ "math.NT" ], "abstract": "We study the shift-Ramanujan expansion (see 1705.07193) of general $f,g$ satisfying Ramanujan Conjecture, in order to get formulae, for their shifted convolution sum, say $C_{f,g}(N,a)$, of length $N$ and shift $a$ (so, the Ramanujan expansion is with respect to a>0). We prove that, assuming Delange Hypothesis (DH) for the expansion, we get say Ramnujan exact explicit formula (R.e.e.f.). A noteworthy case, of course, is $f=g=\\Lambda$, the von Mangoldt function, so $C_{\\Lambda,\\Lambda}(N,2k)$, for natural $k$, regards $2k-$twin primes; assuming $(DH)$ for them, we get (from corresponding R.e.e.f.) the proof, easily, of Hardy-Littlewood Conjecture for them.", "revisions": [ { "version": "v1", "updated": "2017-09-18T07:10:08.000Z" } ], "analyses": { "subjects": [ "11N05", "11P32", "11N37" ], "keywords": [ "elementary property", "correlations", "ramnujan exact explicit formula", "von mangoldt function", "satisfying ramanujan conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }