{ "id": "1709.02814", "version": "v1", "published": "2017-09-08T18:00:03.000Z", "updated": "2017-09-08T18:00:03.000Z", "title": "Electrons and composite Dirac fermions in the lowest Landau level", "authors": [ "Kartik Prabhu", "Matthew M. Roberts" ], "comment": "14 pages, one appendix", "categories": [ "cond-mat.mes-hall", "cond-mat.str-el", "hep-th" ], "abstract": "We construct an action for the composite Dirac fermion consistent with symmetries of electrons projected to the lowest Landau level. First we construct a generalization of the $g=2$ electron that gives a smooth massless limit on any curved background. Using the symmetries of the microscopic electron theory in this massless limit we find a number of constraints on any low-energy effective theory. We find that any low-energy description must couple to a geometry which exhibits nontrivial curvature even on flat space-times. Any composite fermion must have an electric dipole moment proportional and orthogonal to the composite fermion's wavevector. We construct the effective action for the composite Dirac fermion and calculate the physical stress tensor and current operators for this theory.", "revisions": [ { "version": "v1", "updated": "2017-09-08T18:00:03.000Z" } ], "analyses": { "keywords": [ "lowest landau level", "composite dirac fermion consistent", "electric dipole moment proportional", "composite fermions wavevector", "microscopic electron theory" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }