arXiv Analytics

Sign in

arXiv:1709.01886 [hep-lat]AbstractReferencesReviewsResources

Distribution law of the Dirac eigenmodes in QCD

M. Catillo, L. Ya. Glozman

Published 2017-09-06Version 1

The near-zero modes of the Dirac operator are connected to spontaneous breaking of chiral symmetry in QCD (SBCS) via the Banks-Casher relation. At the same time the distribution of the near-zero modes is well described by the Random Matrix Theory (RMT) with the Gaussian Unitary Ensemble (GUE). Then it has become a standard lore that a randomness, as observed through distributions of the near-zero modes of the Dirac operator, is a consequence of SBCS. The higher-lying modes of the Dirac operator are not affected by SBCS and are sensitive to confinement physics and related $SU(2)_{CS}$ and $SU(2N_F)$ symmetries. We study the distribution of the near-zero and higher-lying eigenmodes of the overlap Dirac operator within $N_F=2$ dynamical simulations. We find that both the distributions of the near-zero and higher-lying modes are perfectly described by GUE of RMT. This means that randomness, while consistent with SBCS, is not a consequence of SBCS and is related to some more general property of QCD in confinement regime.

Related articles: Most relevant | Search more
arXiv:hep-lat/0512045 (Published 2005-12-30, updated 2006-01-07)
Dirac Eigenmodes in an Environment of Dynamical Fermions
arXiv:hep-lat/9812003 (Published 1998-12-03, updated 2001-10-04)
Axial anomaly and topological charge in lattice gauge theory with Overlap Dirac operator
arXiv:1505.03285 [hep-lat] (Published 2015-05-13)
Evidence for a new $SU(4)$ symmetry with $J=2$ mesons