{ "id": "1708.05578", "version": "v1", "published": "2017-08-18T12:28:45.000Z", "updated": "2017-08-18T12:28:45.000Z", "title": "Bohr's inequality for analytic functions $\\sum_k b_k z^{kp+m}$ and harmonic functions", "authors": [ "Ilgiz R Kayumov", "Saminathan Ponnusamy" ], "comment": "13 pages; The article is with a journal for several months", "categories": [ "math.CV" ], "abstract": "We determine the Bohr radius for the class of all functions $f$ of the form $f(z)=\\sum_{k=1}^\\infty a_{kp+m} z^{kp+m}$ analytic in the unit disk $|z|<1$ and satisfy the condition $|f(z)|\\le 1$ for all $|z|<1$. In particular, our result also contains a solution to a recent conjecture of Ali, Barnard and Solynin \\cite{AliBarSoly} for the Bohr radius for odd analytic functions, solved by the authors in \\cite{KayPon1}. We consider a more flexible approach by introducing the $p$-Bohr radius for harmonic functions which in turn contains the classical Bohr radius as special case. Also, we prove several other new results and discuss $p$-Bohr radius for the class of odd harmonic bounded functions.", "revisions": [ { "version": "v1", "updated": "2017-08-18T12:28:45.000Z" } ], "analyses": { "subjects": [ "30A05", "30A10", "30B10", "30H05", "41A58", "40A30" ], "keywords": [ "harmonic functions", "bohrs inequality", "odd analytic functions", "odd harmonic bounded functions", "unit disk" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }