{ "id": "1707.01410", "version": "v1", "published": "2017-07-05T14:17:18.000Z", "updated": "2017-07-05T14:17:18.000Z", "title": "Partition algebras $\\mathsf{P}_k(n)$ with $2k>n$ and the fundamental theorems of invariant theory for the symmetric group $\\mathsf{S}_n$", "authors": [ "Georgia Benkart", "Tom Halverson" ], "categories": [ "math.RT", "math.CO" ], "abstract": "Assume $\\mathsf{M}_n$ is the $n$-dimensional permutation module for the symmetric group $\\mathsf{S}_n$, and let $\\mathsf{M}_n^{\\otimes k}$ be its $k$-fold tensor power. The partition algebra $\\mathsf{P}_k(n)$ maps surjectively onto the centralizer algebra $\\mathsf{End}_{\\mathsf{S}_n}(\\mathsf{M}_n^{\\otimes k})$ for all $k, n \\in \\mathbb{Z}_{\\ge 1}$ and isomorphically when $n \\ge 2k$. We describe the image of the surjection $\\Phi_{k,n}:\\mathsf{P}_k(n) \\to \\mathsf{End}_{\\mathsf{S}_n}(\\mathsf{M}_n^{\\otimes k})$ explicitly in terms of the orbit basis of $\\mathsf{P}_k(n)$ and show that when $2k > n$ the kernel of $\\Phi_{k,n}$ is generated by a single essential idempotent $\\mathsf{e}_{k,n}$, which is an orbit basis element. We obtain a presentation for $\\mathsf{End}_{\\mathsf{S}_n}(\\mathsf{M}_n^{\\otimes k})$ by imposing one additional relation, $\\mathsf{e}_{k,n} = 0$, to the standard presentation of the partition algebra $\\mathsf{P}_k(n)$ when $2k > n$. As a consequence, we obtain the fundamental theorems of invariant theory for the symmetric group $\\mathsf{S}_n$. We show under the natural embedding of the partition algebra $\\mathsf{P}_n(n)$ into $\\mathsf{P}_k(n)$ for $k \\ge n$ that the essential idempotent $\\mathsf{e}_{n,n}$ generates the kernel of $\\Phi_{k,n}$. Therefore, the relation $\\mathsf{e}_{n,n} = 0$ can replace $\\mathsf{e}_{k,n} = 0$ when $k \\ge n$.", "revisions": [ { "version": "v1", "updated": "2017-07-05T14:17:18.000Z" } ], "analyses": { "subjects": [ "05E10", "20C30" ], "keywords": [ "partition algebra", "symmetric group", "invariant theory", "fundamental theorems", "orbit basis element" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }