arXiv Analytics

Sign in

arXiv:1707.01410 [math.RT]AbstractReferencesReviewsResources

Partition algebras $\mathsf{P}_k(n)$ with $2k>n$ and the fundamental theorems of invariant theory for the symmetric group $\mathsf{S}_n$

Georgia Benkart, Tom Halverson

Published 2017-07-05Version 1

Assume $\mathsf{M}_n$ is the $n$-dimensional permutation module for the symmetric group $\mathsf{S}_n$, and let $\mathsf{M}_n^{\otimes k}$ be its $k$-fold tensor power. The partition algebra $\mathsf{P}_k(n)$ maps surjectively onto the centralizer algebra $\mathsf{End}_{\mathsf{S}_n}(\mathsf{M}_n^{\otimes k})$ for all $k, n \in \mathbb{Z}_{\ge 1}$ and isomorphically when $n \ge 2k$. We describe the image of the surjection $\Phi_{k,n}:\mathsf{P}_k(n) \to \mathsf{End}_{\mathsf{S}_n}(\mathsf{M}_n^{\otimes k})$ explicitly in terms of the orbit basis of $\mathsf{P}_k(n)$ and show that when $2k > n$ the kernel of $\Phi_{k,n}$ is generated by a single essential idempotent $\mathsf{e}_{k,n}$, which is an orbit basis element. We obtain a presentation for $\mathsf{End}_{\mathsf{S}_n}(\mathsf{M}_n^{\otimes k})$ by imposing one additional relation, $\mathsf{e}_{k,n} = 0$, to the standard presentation of the partition algebra $\mathsf{P}_k(n)$ when $2k > n$. As a consequence, we obtain the fundamental theorems of invariant theory for the symmetric group $\mathsf{S}_n$. We show under the natural embedding of the partition algebra $\mathsf{P}_n(n)$ into $\mathsf{P}_k(n)$ for $k \ge n$ that the essential idempotent $\mathsf{e}_{n,n}$ generates the kernel of $\Phi_{k,n}$. Therefore, the relation $\mathsf{e}_{n,n} = 0$ can replace $\mathsf{e}_{k,n} = 0$ when $k \ge n$.

Related articles: Most relevant | Search more
arXiv:1709.07751 [math.RT] (Published 2017-09-20)
Partition Algebras and the Invariant Theory of the Symmetric Group
arXiv:math/0511043 [math.RT] (Published 2005-11-02, updated 2005-11-30)
A note on the Grothendieck ring of the symmetric group
arXiv:1605.06543 [math.RT] (Published 2016-05-20)
Tensor power multiplicities for symmetric and alternating groups and dimensions of irreducible modules for partition algebras