{ "id": "1705.10403", "version": "v1", "published": "2017-05-29T21:36:00.000Z", "updated": "2017-05-29T21:36:00.000Z", "title": "On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis", "authors": [ "Messoud Efendiev", "Anna Zhigun" ], "categories": [ "math.AP" ], "abstract": "In this article we deal with a class of strongly coupled parabolic systems that encompasses two different effects: degenerate diffusion and chemotaxis. Such classes of equations arise in the mesoscale level modeling of biomass spreading mechanisms via chemotaxis. We show the existence of an exponential attractor and, hence, of a finite-dimensional global attractor under certain 'balance conditions' on the order of the degeneracy and the growth of the chemotactic function.", "revisions": [ { "version": "v1", "updated": "2017-05-29T21:36:00.000Z" } ], "analyses": { "subjects": [ "35B41", "35B45", "35D30", "35K65" ], "keywords": [ "degenerate diffusion", "exponential attractor", "chemotaxis", "finite-dimensional global attractor", "chemotactic function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }