{ "id": "1705.10105", "version": "v1", "published": "2017-05-29T10:36:20.000Z", "updated": "2017-05-29T10:36:20.000Z", "title": "Multiple solutions of nonlinear equations involving the square root of the Laplacian", "authors": [ "Giovanni Molica Bisci", "Dušan D. Repovš", "Luca Vilasi" ], "journal": "Appl. Anal. {\\bf 96}:9 (2017), 1483-1496", "doi": "10.1080/00036811.2016.1221069", "categories": [ "math.AP", "math.OA", "math.OC" ], "abstract": "In this paper we examine the existence of multiple solutions of parametric fractional equations involving the square root of the Laplacian $A_{1/2}$ in a smooth bounded domain $\\Omega\\subset \\mathbb{R}^n$ ($n\\geq 2$) and with Dirichlet zero-boundary conditions, i.e. \\begin{equation*} \\left\\{ \\begin{array}{ll} A_{1/2}u=\\lambda f(u) & \\mbox{ in } \\Omega\\\\ u=0 & \\mbox{ on } \\partial\\Omega. \\end{array}\\right. \\end{equation*} The existence of at least three $L^{\\infty}$-bounded weak solutions is established for certain values of the parameter $\\lambda$ requiring that the nonlinear term $f$ is continuous and with a suitable growth. Our approach is based on variational arguments and a variant of Caffarelli-Silvestre's extension method.", "revisions": [ { "version": "v1", "updated": "2017-05-29T10:36:20.000Z" } ], "analyses": { "subjects": [ "35A15", "35S15", "45G05", "47G20", "49J35" ], "keywords": [ "square root", "multiple solutions", "nonlinear equations", "dirichlet zero-boundary conditions", "parametric fractional equations" ], "tags": [ "journal article" ], "publication": { "publisher": "Taylor-Francis" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }