{ "id": "1705.02485", "version": "v1", "published": "2017-05-06T14:09:45.000Z", "updated": "2017-05-06T14:09:45.000Z", "title": "Primitive root discrepancy for twin primes", "authors": [ "Stephan Ramon Garcia", "Elvis Kahoro", "Florian Luca" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "Numerical evidence suggests that for only about $2\\%$ of pairs $p,p+2$ of twin primes, $p+2$ has more primitive roots than does $p$. If this occurs, we say that $p$ is exceptional (there are only two exceptional pairs with $5 \\leq p \\leq 10{,}000$). Assuming the Bateman-Horn conjecture, we prove that at least $0.47\\%$ of twin prime pairs are exceptional and at least $65.13\\%$ are not exceptional.", "revisions": [ { "version": "v1", "updated": "2017-05-06T14:09:45.000Z" } ], "analyses": { "subjects": [ "11A07", "11A41", "11N36", "11N37" ], "keywords": [ "primitive root discrepancy", "twin prime pairs", "exceptional pairs", "bateman-horn conjecture" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }