{ "id": "1704.00221", "version": "v1", "published": "2017-04-01T19:59:04.000Z", "updated": "2017-04-01T19:59:04.000Z", "title": "On the representation of integers by binary quadratic forms", "authors": [ "Stanley Yao Xiao" ], "categories": [ "math.NT" ], "abstract": "In this note we show that for a given irreducible binary quadratic form $f(x,y)$ with integer coefficients, whenever we have $f(x,y) = f(u,v)$ for integers $x,y,u,v$, there exists a rational automorphism of $f$ which sends $(x,y)$ to $(u,v)$. This answers a question of D.~R.~Heath-Brown.", "revisions": [ { "version": "v1", "updated": "2017-04-01T19:59:04.000Z" } ], "analyses": { "keywords": [ "representation", "irreducible binary quadratic form", "integer coefficients", "rational automorphism" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }