{ "id": "1704.00151", "version": "v1", "published": "2017-04-01T10:26:51.000Z", "updated": "2017-04-01T10:26:51.000Z", "title": "On the greatest common divisor of $n$ and the $n$th Fibonacci number", "authors": [ "Paolo Leonetti", "Carlo Sanna" ], "categories": [ "math.NT" ], "abstract": "Let $\\mathcal{A}$ be the set of all integers of the form $\\gcd(n, F_n)$, where $n$ is a positive integer and $F_n$ denotes the $n$th Fibonacci number. We prove that $\\#\\left(\\mathcal{A} \\cap [1, x]\\right) \\gg x / \\log x$ for all $x \\geq 2$, and that $\\mathcal{A}$ has zero asymptotic density. Our proofs rely on a recent result of Cubre and Rouse which gives, for each positive integer $n$, an explicit formula for the density of primes $p$ such that $n$ divides the rank of appearance of $p$, that is, the smallest positive integer $k$ such that $p$ divides $F_k$.", "revisions": [ { "version": "v1", "updated": "2017-04-01T10:26:51.000Z" } ], "analyses": { "subjects": [ "11B39", "11A05", "11N25" ], "keywords": [ "th fibonacci number", "greatest common divisor", "zero asymptotic density", "smallest positive integer", "explicit formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }